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Discovery: using the Zwicky ransient Facility

ZTF will survey an order of magnitude faster than PTF.

- 3750 deg?/hour
> 311 survey in 8 hours
Act|ve Area (7.26 deg 47 deg

Overnoad | 4 o | 15 coe >250 pbservatlons/fleld/year
Time for uniform survey
Optimal
Exposure 60 sec | 30sec
Time

PS1, 7 deg? &+

Relative Areal
Relative
Volumetric 1x 12.3x ,
Survey Rate .
New ZTF camera: PTF/PTF, 7.3 d992 LSST, 9.6 d692 ZTF, 47 d892

Existing PTF camera | 16 6k x 6k e2v CCDs
MOSAIC 12k N ——+—1deg

The crucial element: ZTF has a large field of view, and
accumulates many images quickly
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‘But it’s not trivial to find these objects’...

Searching for minute
periods in data
sampled over months
{0 years->enormous
frequency grids

Graphics processing units help
10/27/2022 4 a lot with this



T —
N i,
e il
-
v
3 #a el
| b
. ve |
-

2233’

2%%%%
2233
£35%°

~ snwsunc (218
GEFORCE B G ol
RTX 2080Ti PR 77

vial to find these objects... _

=2 :
e m - 970 ENOPWS v
o ] | .
I
11za nae R &
I—L F———— - ﬂ \@ﬂl/__mm‘wmm% w
=y 09090 SN

1185 Duat8al [ |

n Memory 2X Longer Ufespan =} x.)wun.l
|4

o

I

W argy . \“
Wy 2
< ¥

550 o
S

"
A

10

10/27/2022



What’s new with algorithms?

* Period finding on GPUs is orders of magnitude faster than ona CPU
‘when implemented correctly.

~* I have successfully implemented a fast coherent acceleration search GPU
based algorithm, optimized for large scale time domain surveys
operating on a fixed field grid.

* | have now period searched 1.22 billion sources to frequencies of 720
cycles per day. There is a lot there...
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Okay, now let’s get to the good stuff
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Shortest orbital period eclipsing binaries known,
one a He+He core WD, the other a He+CO

Shortest orbital period AM CVn
known (with an accretion disk!).

= 4 Y1 LISA Sensitivity Curve
¥ ZTF Discovered Sources
¢ Kupferetal. 2018
¥ Brown etal. 2020
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What are we learning from these systéms?

* Binary evolution channels (e.g. we see merging pairs of He Core WDs,
CO+He core, and AM CVns undergoing stable mass-transfer)

 Tides in white dwarfs. We can measure these in several ways
(spectroscopically, and also via orbital evolution).

~* We are getting precisé parameter estimates of the WD EOS, and can
study deviations from it introduced by effects such as mass-transfer.

* The above are all things we can do with photons from the ground--
even more tests of physics in these systems will come along with the
launch of LISA.

10/27/2022 24



Some sneak peaks of new results:

* First, something already published

10/27/2022
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Some sneak peaks of new results:

14
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Some sneak peaks of new results:

* 51 min period

10/27/2022
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Some sneak peaks of new results:

* 51 min period T e

t Measured radial velocities

K =461.3+3.4kms"!
B 8+ 24kms !

* F type spectrum!
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Some sneak peaks of new results:

® 2 900 —
[ ) Donor temperature declines as last RLOF/Th
remnants of fusing hydrogen are removed ] 5 Rapid inspiral driven by gravitational wave
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Some sneak peaks of new results:

* 13.7 min period

Total eclipse of accreting white dwarf by donor

Orbital Phase
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Some sneak peaks of new results:

* 13.7 min period

 You can see the
donor!

4200 _
Wavelength (A)
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Some sneak peaks of new results:

* 13.7 min period

 You can see the
donor!

~* And it is really
- moving!
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Some sneak peaks of new results:

* 13.7 min period

 You can see the
donor!

~* And it is really
- moving!

 And is LISA
detectable
(SNR~20)
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Some sneak peaks of new results:

e 13.7 min period

* You can see the
donor!

e And it is really
~moving!

 And is LISA
detectable
(SNR~20)

* Has an x-ray
counterpart!
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Some sneak peaks of new results:

e 13.7 min period

* You can see the
donor!

* And it is really
moving!

e And is LISA
detectable (SNR~20)

* Has an x-ray
counterpart!

* And orbital decay!
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Some sneak peaks of new results:

e 7.9 min period
AM CVn
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Some sneak peaks of new results:

e 7.9 min period
AM CVn

e Also comfortably
in the LISA band
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Looking to the future

 Many new wide field time domain surveys to explore, including TESS, LSST, Roman, etc.
This field is going to undergo a revolution over the next decade from photon based
discoveries.

. We will also see an expansion in powerful surveys at non-optical wavelengths, including
‘AXIS, Roman. We should not underestimate how valuable these will be. |

* Electromagnetic counterparts are what make most galactic LISA sources interesting.-There
may be a few that are interesting based on GWs alone, but the reality is that the
information content of EM counterparts is incredibly rich compared to what can be
encoded in gravitational waves.

10/27/2022 38



What time-domain/multi-wavelength observations are critical for
answering fundamental science questions for this source?

>High angular resolution and deep surveys of the full Milky Way Galaxy, acquiring at least 500 epochs. Coverage at many
wavelengths critical (x-ray, UV, optical, IR, radio). - :

Is this source a potential multi-messenger candidate (i.e., expected to be
detected in GW and/or particles/neutrinos)? If so, what is the

expected multimessenger output and the prospects for detection in the next
10 years? |

>Yes, when LISA launches, these sources will represent the vast majority of all known multi-messenger sources in the field of
‘astronomy. The work presented here demonstrates that the prospects for discovering them in the next 10 years using photons
are incredibly bright.. This is going to be the next blg hot topic in astronomy.

What is-needed for the time domain/multi-wavelength and/or multimessenger detections described above (more theory work,
more

observations, new technology, new missions/facilities, etc.)?

>New missions/facilities and observations! We need an x-ray, IR, and UV time domain survey of the sky, especially the Galactic
plane. We should focus on sampling optimized for detecting millihertz frequency flux variations in sources. As mentioned above,
angular resolution is critical. We also need follow up facilities (for high time resolution spectroscopy and imaging).
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